Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Given the following functions below,
[tex]\begin{gathered} f(x)=\frac{x+12}{x^2+4x-12}\text{ and} \\ g(x)=\frac{4x^2-16x+16}{4x+48} \end{gathered}[/tex]Factorising the denominators of both functions,
Factorising the denominator of f(x),
[tex]\begin{gathered} f(x)=\frac{x+12}{x^2+4x-12}=\frac{x+12}{x^2+6x-2x-12}=\frac{x+12}{x(x+6)-2(x+6)}=\frac{x+12}{(x-2)(x+6)} \\ f(x)=\frac{x+12}{(x-2)(x+6)} \end{gathered}[/tex]Factorising the denominator of g(x),
[tex]\begin{gathered} g(x)=\frac{4x^2-16x+16}{4x+48}=\frac{4(x^2-4x+4)}{4(x+12)} \\ \text{Cancel out 4 from both numerator and denominator} \\ g(x)=\frac{x^2-4x+4}{x+12}=\frac{x^2-2x-2x+4}{x+12}=\frac{x(x-2)-2(x-2)}{x+12}=\frac{(x-2)^2}{x+12} \\ g(x)=\frac{(x-2)^2}{x+12} \end{gathered}[/tex]Multiplying both functions,
[tex]undefined[/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.