Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Given that there are 6 workshops about chemistry and 7 workshops about biology.
So the total number of workshops available are,
[tex]\begin{gathered} =6+7 \\ =13 \end{gathered}[/tex]The number of ways of selecting 'r' objects from 'n' distinct objects is given by,
[tex]^nC_r=\frac{n!}{r!\cdot(n-r)!}[/tex]The total number of ways of selecting 4 workshops having no workshop about chemistry is calculated as,
[tex]\begin{gathered} n(\text{ 0 chemistry)}=^7C_4 \\ n(\text{ 0 chemistry)}=\frac{7!}{4!\cdot(7-4)!} \\ n(\text{ 0 chemistry)}=\frac{7\cdot6\cdot5\cdot4!}{4!\cdot3!} \\ n(\text{ 0 chemistry)}=\frac{7\cdot6\cdot5}{3\cdot2\cdot1} \\ n(\text{ 0 chemistry)}=35 \end{gathered}[/tex]The total number of ways of selecting 4 workshops having exactly 1 workshop about chemistry is calculated as,
[tex]\begin{gathered} n(\text{ 1 chemistry)}=^7C_3\cdot^6C_1 \\ n(\text{ 1 chemistry)}=\frac{7!}{3!\cdot(7-3)!}\cdot\frac{6!}{1!\cdot(6-1)!} \\ n(\text{ 1 chemistry)}=\frac{7\cdot6\cdot5\cdot4\cdot3!}{3!\cdot4!}\cdot\frac{6\cdot5!}{1!\cdot5!} \\ n(\text{ 1 chemistry)}=\frac{7\cdot6\cdot5\cdot4}{4\cdot3\cdot2\cdot1}\cdot6 \\ n(\text{ 1 chemistry)}=210 \end{gathered}[/tex]The total number of ways of selecting 4 workshops having exactly 2 workshops about chemistry is calculated as,
[tex]\begin{gathered} n(\text{ 2 chemistry)}=^7C_2\cdot^6C_2 \\ n(\text{ 2 chemistry)}=\frac{7!}{2!\cdot(7-2)!}\cdot\frac{6!}{2!\cdot(6-2)!} \\ n(\text{ 2 chemistry)}=\frac{7\cdot6\cdot5!}{2!\cdot5!}\cdot\frac{6\cdot5\cdot4!}{2!\cdot4!} \\ n(\text{ 2 chemistry)}=\frac{7\cdot6}{2\cdot1}\cdot\frac{6\cdot5}{2\cdot1} \\ n(\text{ 2 chemistry)}=315 \end{gathered}[/tex]Consider that the number of ways to select 4 workshops if 2 or fewer must be about chemistry, will be equal to the sum of the individual cases when the number of chemistry workshops in the selection are either 0 or 1 or 2.
This can be calculated as follows,
[tex]\begin{gathered} \text{ Total}=n(\text{ 0 chemistry)}+n(\text{ 1 chemistry)}+n(\text{ 2 chemistry)} \\ \text{Total}=35+210+315 \\ \text{Total}=560 \end{gathered}[/tex]Thus, the total number of ways is 560.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.