Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

the function f(x) = |2x-4| is not a one-to-one function. graph the part of the function that is one-to-one and extends to positive infinity.

The Function Fx 2x4 Is Not A Onetoone Function Graph The Part Of The Function That Is Onetoone And Extends To Positive Infinity class=

Sagot :

Here, we want to graph the part of the graph that is one-to-one

What we have to do here is to remove the absolute value signs and plot the graph of the line that it normally looks like

Generally, we have the equation of a straight line as;

[tex]y\text{ = mx + b}[/tex]

where m is the slope and b is the y-intercept

Looking at the function f(x) = 2x-4; -4 is simply the y-intercept value

So, we have a point at (0,-4)

To get the second point, set f(x) = 0

[tex]\begin{gathered} 2x-\text{ 4 = 0} \\ 2x\text{ = 4} \\ x\text{ =}\frac{4}{2}\text{ = 2} \end{gathered}[/tex]

So, we have the second point as (2,0)

By joining (2,0) to (0,-4) ; we have the plot of the part of the function that extends to infinity

Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.