Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Answer:
332.19 years
Explanation:
The weight, W of the substance after n years is given by:
[tex]W=W_o\mleft(\frac{1}{2}\mright)^{\frac{n}{100}}[/tex]Let the initial weight = 100%
If the substance loses to 10% of its initial weight, then:
• Wo = 100%
,• W= 10%
Substitute these into the formula:
[tex]\begin{gathered} \frac{10}{100}=\frac{100}{100}\mleft(\frac{1}{2}\mright)^{\frac{n}{100}} \\ \implies0.1=\mleft(\frac{1}{2}\mright)^{\frac{n}{100}} \end{gathered}[/tex]We then solve the equation for the value of n.
Take the logarithm of both sides.
[tex]\begin{gathered} \log (0.1)=\log \mleft(\frac{1}{2}\mright)^{\frac{n}{100}} \\ \implies\log (0.1)=\frac{n}{100}\log (\frac{1}{2})^{} \end{gathered}[/tex]Then divide both sides by log(1/2):
[tex]\begin{gathered} \frac{\log (0.1)}{\log (\frac{1}{2})}=\frac{\frac{n}{100}\log(\frac{1}{2})^{}}{\log(\frac{1}{2})} \\ \implies\frac{n}{100}=\frac{\log (0.1)}{\log (\frac{1}{2})} \end{gathered}[/tex]Finally, multiply both sides by 100:
[tex]\begin{gathered} 100\times\frac{n}{100}=100\times\frac{\log (0.1)}{\log (\frac{1}{2})} \\ n=332.19\text{ years} \end{gathered}[/tex]It will take at least 332.19 years for the radioactive substance to lose to 10% of its initial weight.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.