Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Car X weighs 136 pounds more than car Z. Car Y weighs 117 pounds more than car Z. The total weight of all three cars is 9439 pounds. How much does each car weigh?

Sagot :

Let x, y and z denote the weighs of car X, car Y and car Z, respectively.

We know that car X weighs 136 more than car Z, this can be express by the equation:

[tex]x=z+136[/tex]

We also know that Y weighs 117 pounds more than car Z, this can be express as:

[tex]y=z+117[/tex]

Finally, we know that the total weight of all the cars is 9439, then we have:

[tex]x+y+z=9439[/tex]

Hence, we have the system of the equations:

[tex]\begin{gathered} x=z+136 \\ y=z+117 \\ z+y+z=9439 \end{gathered}[/tex]

To solve the system we can plug the values of x and y, given in the first two equations, in the last equation; then we have:

[tex]\begin{gathered} z+136+z+117+z=9439 \\ 3z=9439-136-117 \\ 3z=9186 \\ z=\frac{9186}{3} \\ z=3062 \end{gathered}[/tex]

Now that we have the value of z we plug it in the first two equations to find x and y:

[tex]\begin{gathered} x=3062+136=3198 \\ y=3062+117=3179 \end{gathered}[/tex]

Therefore, car X weighs 3198 pound, car Y weighs 3179 pounds and car Z weighs 3062 pounds.