Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

A principal of $600 earns 3.2% interest compounded monthly. What is the effective interest (growth) rate? (Hint: make the equation look like abt.) About how long does it take to reach $1000?

A Principal Of 600 Earns 32 Interest Compounded Monthly What Is The Effective Interest Growth Rate Hint Make The Equation Look Like Abt About How Long Does It T class=

Sagot :

Answer:

Explanation:

The formula for calculating the effective interest rate is expressed as

R = (1 + i/n)^n - 1

where

R is the effective interest rate

i is the nominal rate

n is the number of compounding periods in a year

From the information given,

n = 12 because it was compounded monthly

i = 3.2% = 3.2/100 = 0.032

Thus,

R = (1 + 0.032/12)^12 - 1

R = 0.03247

Multiplying by 100, it becomes 0.03247 x 100

Effective interest rate = 3.25%

We would apply the formula for calculating compound interest which is expressed as

A = a(1 + r/n)^nt

where

a is the principal or initial amount

t is the number of years

A is the final amount after t years

From the information given,

A = 1000

a = 600

n = 12

We want to find t

By substituting these values into the formula, we have

1000 = 600(1 + 0.032/12)^12t

1000/600 = (1.00267)^12t

Taking natural log of both sides, we have

ln (1000/600) = ln (1.00267)^12t = 12tln(1.00267)

12t = [ln (1000/600)]/ln (1.00267) = 191.5758

t = 191.5758/12

t = 16

It takes 16 years for the amount to reach $1000