Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
hello
to write an explicit formula, we have to determine what type of sequence is it
7, 35, 17
this is clearly a geometric progression with values of
first term = 7
common ratio = 5
the explicit formula of a geometric progression is given as
[tex]\begin{gathered} a_n=a\cdot r^{(n-1)}^{} \\ n=\text{nth term} \\ a=\text{first term} \\ r=\text{common ratio} \end{gathered}[/tex]now let's substitute the variables into the equation
[tex]\begin{gathered} a_n=a\cdot r^{(n-1)} \\ a_n=7\cdot5^{(n-1)} \\ a_n=35^{(n-1)} \end{gathered}[/tex]the equation above is the explicit formula for the sequence
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.