Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Part A)
According to the text, the equation that relates x and y is:
[tex]y=\frac{14}{x}[/tex]Substitute x=21 to find the value of y when x=21:
[tex]y=\frac{14}{21}[/tex]Simplify the expression:
[tex]\frac{14}{21}=\frac{7\cdot2}{7\cdot3}=\frac{2}{3}[/tex]Therefore, the value of y when x=21 is:
[tex]\frac{2}{3}[/tex]Part B)
To find the value of x when y=28, substitute y=28 and solve for x:
[tex]\begin{gathered} y=\frac{14}{x} \\ \Rightarrow28=\frac{14}{x} \\ \Rightarrow28x=14 \\ \Rightarrow x=\frac{14}{28} \\ \therefore x=\frac{1}{2} \end{gathered}[/tex]Therefore, the value of x when y=28 is:
[tex]\frac{1}{2}[/tex]Part C)
Since the pressure P is inversely proportional to the volume V, then:
[tex]P=\frac{k}{V}[/tex]Solve for k and substitute P=250kPa and V=1.7m^2 to find the constant of proportionality:
[tex]\begin{gathered} \Rightarrow k=PV \\ =(250\text{kPa})(1.7m^3) \\ =425\text{kPa}\cdot m^3 \end{gathered}[/tex]Therefore, the constant of proportionality for this situation is:
[tex]425\text{ kPa}\cdot m^3[/tex]Part D)
Substitute the value of k into the equation that shows the inverse relation between P and V:
[tex]\begin{gathered} P=\frac{k}{V} \\ \Rightarrow P=\frac{425\text{ kPa}\cdot m^3}{V} \end{gathered}[/tex]Therefore, the inverse variation equation model for this situation, is:
[tex]P=\frac{425\text{ kPa}\cdot m^3}{V}[/tex]Part E)
Substitute V=3.2m^3 to find the pressure under those conditions:
[tex]\begin{gathered} P=\frac{425\text{ kPa}\cdot m^3}{3.2m^3} \\ =132.8\text{kPa} \end{gathered}[/tex]Therefore, the pressure would be:
[tex]132.8\text{kPa}[/tex]Part F)
Isolate V from the equation and substitute P=150kPa:
[tex]\begin{gathered} V=\frac{425\text{ kPa}\cdot m^3}{P} \\ =\frac{425\text{ kPa}\cdot m^3}{150\text{ kPa}} \\ =2.83m^3 \end{gathered}[/tex]Therefore, the approximate volume would have to be equal to:
[tex]2.83m^3[/tex]Part G)
Since the temperature has decreased, the pressure must be lower according to the description provided in the text. Then, an inequality to model this situation would be:
[tex]P<\frac{k}{V}[/tex]Part H)
Substitute the value of k and V=3m^3:
[tex]\begin{gathered} P<\frac{425\text{ kPa}\cdot m^3}{3m^3} \\ \Rightarrow P<141.7\text{ kPa}^{} \end{gathered}[/tex]Part I)
Mathematically, all numbers under 141.7 satisfy the inequality from part H. Nevertheless, negative pressures do not have a physical meaning under the context of the Ideal Gas Law. Therefore, we must include the condition that P is greater than 0:
[tex]0
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.