At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

use the first derivative test to classify the relative extrema. Write all relative extrema as ordered pairs

Use The First Derivative Test To Classify The Relative Extrema Write All Relative Extrema As Ordered Pairs class=

Sagot :

The given function is

[tex]f(x)=-10x^2-120x-5[/tex]

First, find the first derivative of the function f(x). Use the power rule.

[tex]\begin{gathered} f^{\prime}(x)=-10\cdot2x^{2-1}-120x^{1-1}+0 \\ f^{\prime}(x)=-20x-120 \end{gathered}[/tex]

Then, make it equal to zero.

[tex]-20x-120=0[/tex]

Solve for x.

[tex]\begin{gathered} -20x=120 \\ x=\frac{120}{-20} \\ x=-6 \end{gathered}[/tex]

This means the function has one critical value that creates two intervals.

We have to evaluate the function using two values for each interval.

Let's evaluate first for x = -7, which is inside the first interval.

[tex]f^{\prime}(-7)=-20(-7)-120=140-120=20\to+[/tex]

Now evaluate for x = -5, which is inside the second interval.

[tex]f^{\prime}(7)=-20(-5)-120=100-120=-20\to-[/tex]

As you can observe, the function is increasing in the first interval but decreases in the second interval. This means when x = -6, there's a maximum point.

At last, evaluate the function when x = -6 to find the y-coordinate and form the point.

[tex]\begin{gathered} f(-6)=-10(-6)^2-120(-6)-5=-10(36)+720-6 \\ f(-6)=-360+720-5=355 \end{gathered}[/tex]

Therefore, we have a relative maximum point at (-6, 355).

View image LornaO328402