Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To graph each equation in the system, you can give it x-values, plug into the equations, and get values for Y.
Since a single line passes through two points, just take two values of x for each equation. So, for the first you have for example
*If x = 3
[tex]\begin{gathered} y=-x-2 \\ y=-3-2 \\ y=-5 \\ \text{ So} \\ (3,-5) \end{gathered}[/tex]*If x = -4
[tex]\begin{gathered} y=-x-2 \\ y=-(-4)-2 \\ y=4-2 \\ y=2 \\ \text{ So,} \\ (-4,2) \end{gathered}[/tex]For the second equation you have for example
*If x = 1
[tex]\begin{gathered} y+2=-x \\ y+2=-1 \\ y+2-2=-1-2 \\ y=-3 \\ \text{ So,} \\ (1,-3) \end{gathered}[/tex]*if x = -1
[tex]\begin{gathered} y+2=-(-1) \\ y+2=1 \\ y+2-2=1-2 \\ y=-1 \\ \text{ So,} \\ (-1,-1) \end{gathered}[/tex]Now, graphing the equations you have
As you can see, the lines associated with this system of equations overlap, that is, they share infinite solution points.
Therfore, the correct answer is C. infinitely many solutions.

We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.