Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To graph each equation in the system, you can give it x-values, plug into the equations, and get values for Y.
Since a single line passes through two points, just take two values of x for each equation. So, for the first you have for example
*If x = 3
[tex]\begin{gathered} y=-x-2 \\ y=-3-2 \\ y=-5 \\ \text{ So} \\ (3,-5) \end{gathered}[/tex]*If x = -4
[tex]\begin{gathered} y=-x-2 \\ y=-(-4)-2 \\ y=4-2 \\ y=2 \\ \text{ So,} \\ (-4,2) \end{gathered}[/tex]For the second equation you have for example
*If x = 1
[tex]\begin{gathered} y+2=-x \\ y+2=-1 \\ y+2-2=-1-2 \\ y=-3 \\ \text{ So,} \\ (1,-3) \end{gathered}[/tex]*if x = -1
[tex]\begin{gathered} y+2=-(-1) \\ y+2=1 \\ y+2-2=1-2 \\ y=-1 \\ \text{ So,} \\ (-1,-1) \end{gathered}[/tex]Now, graphing the equations you have
As you can see, the lines associated with this system of equations overlap, that is, they share infinite solution points.
Therfore, the correct answer is C. infinitely many solutions.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.