Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Match each solid cone to it’s surface area. Answers are rounded to the nearest square unit

Match Each Solid Cone To Its Surface Area Answers Are Rounded To The Nearest Square Unit class=

Sagot :

The surface area of a cone is given by the formula below:

[tex]S=\pi r^2+\pi rs[/tex]

Where r is the base radius and s is the slant height.

So, calculating the surface area of first cone, we have:

[tex]\begin{gathered} s^2=21^2+6^2\\ \\ s^2=441+36\\ \\ s^2=477\\ \\ s=21.84\\ \\ S=\pi\cdot6^2+\pi\cdot6\cdot21.84\\ \\ S=525 \end{gathered}[/tex]

The surface area of the second cone is:

[tex]\begin{gathered} s^2=8^2+12^2\\ \\ s^2=64+144\\ \\ s^2=208\\ \\ s=14.42\\ \\ S=\pi\cdot12^2+\pi\cdot12\cdot14.42\\ \\ S=996 \end{gathered}[/tex]

The surface area of the third cone is:

[tex]\begin{gathered} s^2=15^2+8^2\\ \\ s^2=225+64\\ \\ s^2=289\\ \\ s=17\\ \\ S=\pi\cdot8^2+\pi\cdot8\cdot17\\ \\ S=628 \end{gathered}[/tex]

And the surface area of the fourth cone is:

[tex]\begin{gathered} s^2=10^2+10^2\\ \\ s^2=100+100\\ \\ s^2=200\\ \\ s=14.14\\ \\ S=\pi\cdot10^2+\pi\cdot10\cdot14.14\\ \\ S=758 \end{gathered}[/tex]