Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Answer:
a) 4060 different combinations
b) 30!
Explanation:Given:
Total balls of different patterns = 30
To find:
a) the different three-ball combinations one can have if 3 balls are pulled out of the bag
b) the total number of possible combinations there are if you draw all the balls out of the bag one at a time in factorial form
a) To determine the 3-ball combinations, we will apply combination as the order they are picked doesnot matter
[tex]\begin{gathered} for^^^\text{ the 3 ball comination = }^nC_r \\ where\text{ n = 30, r = 3} \\ \\ ^{30}C_3\text{ = }\frac{30!}{(30-3)!3!} \\ ^{30}C_3\text{ = }\frac{30!}{27!3!}\text{= }\frac{30\times29\times28\times27!}{27!\times3\times2\times1} \\ \\ ^{30}C_3\text{ = 4060 different combinations} \end{gathered}[/tex]b) if you are to draw all the balls one at a time, then for the 1st it will be 30 possibilities, the next will reduce by 1 to 29 possibilities, followed by 28 possibilities, etc to the last number 1
The possible combination = 30 × 29 × 28 × 27 × 26 × 25 ......5 × 4 × 3 × 2 ×1
The above is an expansion of a number factorial. the number is 30
30! = 30 × 29 × 28 × 27 × 26 × 25 ......5 × 4 × 3 × 2 ×1
Hence, the total number of possible combinations when you draw all the balls out of the bag one at a time in factorial form is 30!
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.