Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
18.
Given:
[tex]g(x)=3sin2x[/tex]Required:
We need to graph the function and find the transformation from the parent function.
Explanation:
The given equation is of the form.
[tex]g(x)=Asin(Bx+C)[/tex]where A =3, B=2, and C=0.
We know that A is amplitude.
[tex]Amplitude=3[/tex][tex]Period=\frac{2\pi}{|B|}[/tex]Substitute B=2 in the equation,
[tex]Period=\frac{2\pi}{|2|}[/tex][tex]Period=\pi[/tex]Recall that the amplitude of a function is the amount by which the graph of the function travels above and below its midline.
The distance between the maximum point and midline is 3.
The time interval between two waves is known as a Period
The time interval between two waves is pi.
The graph of the function.
[tex]The\text{ parent function is f\lparen x\rparen=sinx.}[/tex]Recall that the amplitude stretches or compresses the graph vertically.
Here we have amplitude =3. it is a positive value.
The parent function stretches vertically by 3 units.
Recall that the period stretches or compresses the graph horizontally.
Here we have the period is pi.
The parent function compresses horizontally by pi.
Final answer:
[tex]Amplitude=3[/tex][tex]Period=\pi[/tex]The transformation is stretched vertically by 3 units and compressed horizontally by pi.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.