Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
SOLUTION
Given the question in the image, the following are the solution steps to answer the question.
STEP 1: Write the given coordinates
[tex]A(-3,0),B(0,5),C(3,0),D(x,y)[/tex]STEP 2: State the side properties of a rhombus
In a rhombus, all sides are equal. This means that the length of the sides are equal and therefore the distances of the vertices apart will be the same.
And also, Diagonals of rhombus bisect each other. This implies that:
Co-ordinates of mid-points of AC= Co-ordinates of mid-points of BD
STEP 3: Find the distances of the sides
Midpoints of AC will be calculated as:
[tex]\begin{gathered} \mathrm{Midpoint\:of\:}\left(x_1,\:y_1\right),\:\left(x_2,\:y_2\right):\quad \left(\frac{x_2+x_1}{2},\:\:\frac{y_2+y_1}{2}\right) \\ \left(x_1,\:y_1\right)=\left(-3,\:0\right),\:\left(x_2,\:y_2\right)=\left(3,\:0\right) \\ =\left(\frac{3-3}{2},\:\frac{0+0}{2}\right) \\ =\left(0,\:0\right) \end{gathered}[/tex]Midpoints of BD will be calculated as:
[tex]\begin{gathered} \mathrm{Midpoint\:of\:}\left(x_1,\:y_1\right),\:\left(x_2,\:y_2\right):\quad \left(\frac{x_2+x_1}{2},\:\:\frac{y_2+y_1}{2}\right) \\ \left(x_1,\:y_1\right)=\left(0,\:5\right),\:\left(x_2,\:y_2\right)=\left(x,\:y\right) \\ =\left(\frac{x+0}{2},\:\frac{y+5}{2}\right) \\ =\left(\frac{x}{2},\:\frac{y+5}{2}\right) \end{gathered}[/tex]Since midpoints are the same as mentioned above, this means that:
[tex]\begin{gathered} \left(\frac{x}{2},\:\frac{y+5}{2}\right)=(0,0) \\ \frac{x}{2}=0,x=0 \\ \frac{y+5}{2}=0,y+5=0,y=-5 \\ \\ \therefore(x,y)=(0,-5) \end{gathered}[/tex]Hence, the coordinates of the fourth vertex is given as:
[tex][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.