Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

A ball of mass 1.86 kilograms is attached to a cord 1.29 meters long and swung in a vertical circle at a constant speed of 5.27 meters per second. What is the centripetal force acting on the ball? Include units in your answer. What is the tension in the cord when the ball is at the bottom of its path? Include units in your answer. What is the tension in the cord when the ball is at the top of its path? Include units in your answer. All answers must be in 3 significant digits.

Sagot :

[tex]\begin{gathered} centripetal\text{ force= 40.044 Newtons} \\ T_{bottom}=58.291\text{ Newtons} \\ T_{\text{top}}=21.79\text{ Newtons} \end{gathered}[/tex]

Explanation

Step 1

Draw

so

a)centripetal force:

the centripetal force is given by.

[tex]\begin{gathered} F=ma \\ F=m\frac{v^2}{r} \\ \text{where } \\ F_{C\text{ }}\text{ is the centripetal force} \\ m\text{ is the mass } \\ v\text{ is the velocty } \\ r\text{ is the radius} \end{gathered}[/tex]

now, replace

[tex]\begin{gathered} F=m\frac{v^2}{r} \\ F=1.86\text{ kg }\frac{(\text{ 5.27 }\frac{m}{s})^2}{1.29\text{ m}} \\ F=40.044\text{ Newtons} \end{gathered}[/tex]

so, the centripetal force is 40.0446 Newtons

b) What is the tension in the cord when the ball is at the bottom of its path?

to find the tension in bottom, we need to add the weigth of the ball,so

[tex]\begin{gathered} \text{weigth}=\text{ mass}\cdot accelofgravity \\ w=mg \end{gathered}[/tex]

hence, the tension would be

[tex]\begin{gathered} T_{bottom}=m\frac{v^2}{r}+mg \\ \end{gathered}[/tex]

replace

[tex]\begin{gathered} T_{bottom}=m\frac{v^2}{r}+mg \\ T_{bottom}=40.044\text{ N+(1.86 kg}\cdot9.81\text{ }\frac{\text{m}}{s^2}) \\ T_{bottom}=40.044\text{ N+18.2466 N} \\ T_{bottom}=58.291\text{ N} \end{gathered}[/tex]

c)What is the tension in the cord when the ball is at the top of its path?

to find the tension in the top we need to subtract the weigth, so

[tex]\begin{gathered} T_{\text{top}}=m\frac{v^2}{r}-mg \\ replace \\ T_{\text{top}}=40.044\text{ N-18.2466 N} \\ T_{\text{top}}=21.79\text{ Newtons} \end{gathered}[/tex]

I hope this helps you

View image SuhanaG397334
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.