At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Answer:
D. The system is inconsistent
Step-by-step Explanation:
Given the below system of equations;
[tex]\begin{gathered} 2x-2y+5z=11\ldots\ldots\ldots\text{Equation 1} \\ 6x-5y+13z=30\ldots\ldots\ldots\text{.}\mathrm{}\text{Equation 2} \\ -2x+3y-7z=-13\ldots\ldots\ldots\text{Equation 3} \end{gathered}[/tex]We'll follow the below steps to solve the above system of equations;
Step 1: Add Equation 1 and Equation 3;
[tex]\begin{gathered} (2x-2x)+(-2y+3y)+(5z-7z)=(11-13) \\ y-2z=-2 \\ y=2z-2\ldots\ldots\text{.}\mathrm{}\text{Equation 4} \end{gathered}[/tex]Step 2: Multiply Equation 3 by 3, we'll have;
[tex]-6x+9y-21z=-39\ldots\ldots\text{.Equation 5}[/tex]Step 3: Add Equation 2 and Equation 5, we'll have;
[tex]4y-8z=-9\ldots\ldots\ldots\text{Equation 6}[/tex]Step 4: Put Equation 4 into Equation 6 and solve for z;
[tex]\begin{gathered} 4(2z-2)-8z=-9 \\ 8z-8-8z=-9 \\ 8z-8z=-9+8 \\ 0=-1 \end{gathered}[/tex]From the above, we can see that we do not have a solution for z, therefore, we can say that the system of equations has no solution, hence, it is inconsistent.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.