Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

3. Lin is solving this system of equations:S 6x – 5y = 343x + 2y = 83. She starts by rearranging the second equation to isolate the y variable: y = 4 -1.5%. She then substituted the expression 4 - 1.5x for y in the first equation, asshown below:--6x – 5(4 – 1.5x) = 346x – 20 – 7.5x = 34-1.5x = 54x = -36y = 4 – 1.5xy = 4 - 1.5 • (-36)y = 58.

3 Lin Is Solving This System Of EquationsS 6x 5y 343x 2y 83 She Starts By Rearranging The Second Equation To Isolate The Y Variable Y 4 15 She Then Substituted class=
3 Lin Is Solving This System Of EquationsS 6x 5y 343x 2y 83 She Starts By Rearranging The Second Equation To Isolate The Y Variable Y 4 15 She Then Substituted class=

Sagot :

We are given the following system of equations:

[tex]\begin{gathered} 6x-5y=34,(1) \\ 3x+2y=8,(2) \end{gathered}[/tex]

We are asked to verify if the point (-36, 58) is a solution to the system. To do that we will substitute the values x = -36 and y = 58 in both equations and both must be true.

Substituting in equation (1):

[tex]6(-36)-5(58)=34[/tex]

Solving the left side we get:

[tex]-506=34[/tex]

Since we don't get the same result on both sides this means that the point is not a solution.

Now, we will determine where was the mistake.

The first step is to solve for "y" in equation (2). To do that, we will subtract "3x" from both sides:

[tex]2y=8-3x[/tex]

Now, we divide both sides by 2:

[tex]y=\frac{8}{2}-\frac{3}{2}x[/tex]

Solving the operations:

[tex]y=4-1.5x[/tex]

Now, we substitute this value in equation (1), we get:

[tex]6x-5(4-1.5x)=34[/tex]

Now, we apply the distributive law on the parenthesis:

[tex]6x-20+7.5x=34[/tex]

This is where the mistake is, since when applying the distributive law the product -5(-1.5x) is 7.5x and not -7.5x.