Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
SOLUTION
The price of the car = $12,000
The depreciate by 10%
[tex]\begin{gathered} \text{ The depreciating value for the first year } \\ 12,000\times(\frac{10}{100})^1 \\ \text{Then} \\ 12,000\times0.1 \end{gathered}[/tex]Then
[tex]12,000-12,00(0.1)[/tex]Then
[tex]\begin{gathered} 12000(1-0.1) \\ 12,000(0.9) \end{gathered}[/tex]For the first year the depreciating value will be
[tex]12,000(0.9)[/tex]Base on the number of years, the exponential equation will be
[tex]\begin{gathered} f(x)=12,000(0.9)^x \\ \text{where } \\ x=\text{ number of years } \end{gathered}[/tex]Therefore
The exponential equation that represent the value of the car is
F(x)=12,000(0.9)^x
The price of the car in 5 yeras will be obtain by substituting x=5 into the equation above
[tex]\begin{gathered} f(x)=12,000(0.9)^x \\ \text{where x=5} \\ f(x)=12,000(0.9)^5=7085.88 \end{gathered}[/tex]The car will worth $7085.88 after 5 years
Similarly, The for 12 years we have x=12
[tex]f(x)=12,000(0.9)^{12}=3389.15[/tex]The car will worth $3389.15 after 12 years
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.