Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Find the number of CDs that will produce maximum revenue.

Find The Number Of CDs That Will Produce Maximum Revenue class=

Sagot :

Given data:

Price of CD is,

[tex]p(x)=90-\frac{x}{6}[/tex]

The total revenue is,

[tex]R(x)=90x-\frac{x^2}{6}[/tex]

First find the derivative of revenue function and then equate it to zero we have,

[tex]\begin{gathered} R^{\prime}(x)=0 \\ 90-\frac{2x}{6}=0 \end{gathered}[/tex][tex]\begin{gathered} \frac{x}{3}=90 \\ x=90\times3 \\ x=270 \end{gathered}[/tex]

Now, to prove the maximize find the double derivative of revenue function

[tex]\begin{gathered} R^{\doubleprime}(x)<0 \\ \frac{-2}{6}=\frac{-1}{3}<0 \end{gathered}[/tex]

Thus, 270 CD's will produce maximum revenue.

Answer: Option (c) that is 270.

Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.