Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
First we need to understand what |x| means or what values it repressents
[tex]|x|=\begin{cases}x,x\ge0 \\ \\ -x,x<0\end{cases}[/tex]|x| indicates the absolute value of x, this is, x is always going to be positive, for example,
when x = 1 -> |x| = 1 , but also when x = -1 , then |x| = 1
Since, in this case, we need to find the limit when X approaches 0 from the left we are going to use |x| = -x , for x<0
this is...
[tex]\lim _{x\rightarrow0-}\frac{x}{|x|}=\lim _{x\rightarrow0-}\frac{x}{-x}=\lim _{x\rightarrow0-}(-1)=-1[/tex]At this point we have proved the limit statement.
So, in order to answer the question in the lower part... x approaches to 0 from the left, x<0, |x| = -x
In the graph you can see, whenever X<0 the value of the funcion will be negative and when it approaches 0 it becomes -1
On the other hand, when the function approaches to 0 from the right, the value of the function is +1. This is a discontinuity
[tex]\lim _{x\rightarrow0-}\frac{x}{|x|}=\lim _{x\rightarrow0-}\frac{x}{-x}[/tex]This way we eliminate the absolute value, because, remember, when x<0, |x| = -x
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.