Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

what is the rate of change of the cube’s surface area when its edges are 50 mm long?

What Is The Rate Of Change Of The Cubes Surface Area When Its Edges Are 50 Mm Long class=

Sagot :

The first thing we are going to do is identify the volume and surface of the cube and their respective derivatives or rate of change

[tex]\begin{gathered} V\to\text{volume} \\ S\to\text{surface} \\ l=\text{side of a square} \end{gathered}[/tex][tex]\begin{gathered} V=l^3\to(1) \\ \frac{dV}{dt}=3l^2\frac{dl}{dt}\to(2) \end{gathered}[/tex][tex]\begin{gathered} S=6l^2\to(3) \\ \frac{dS}{dt}=12\cdot l\cdot\frac{dl}{dt}\to(4) \end{gathered}[/tex]

From the exercise we know that:

[tex]\begin{gathered} \frac{dV}{dt}=300\frac{\operatorname{mm}^3}{s}\to(5) \\ 3l^2\frac{dl}{dt}=300\frac{\operatorname{mm}^3}{s}\to(2)=(5) \\ \frac{dl}{dt}=\frac{300}{3l^2}\frac{\operatorname{mm}^3}{s}\to(6) \end{gathered}[/tex]

The exercise asks us to calculate the rate of change of the surface (4) so we substitute the differential of length (6) in (4)

[tex]\begin{gathered} \frac{dS}{dt}=12\cdot l\cdot(\frac{300}{3l^2}\frac{\operatorname{mm}^3}{s}) \\ \frac{dS}{dt}=\frac{1200}{l}\frac{\operatorname{mm}}{s} \end{gathered}[/tex]

what is the rate of change of the cube’s surface area when its edges are 50 mm long?

[tex]\begin{gathered} l=50\operatorname{mm} \\ \frac{dS}{dt}=\frac{1200}{50\operatorname{mm}}\frac{\operatorname{mm}^3}{s} \\ \frac{dS}{dt}=24\frac{\operatorname{mm}^2}{s} \end{gathered}[/tex]

The answer is 44mm²/s

Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.