Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Two trees are leaning on each other in the forest. One tree is 19 feet long and makes a 32° angle with the ground. The second tree is 16 feet long.What is the approximate angle, x, that the second tree makes with the ground?

Sagot :

39º

1) Considering what's been given we can sketch this out:

From these trees leaning on each other, we can visualize a triangle (in black).

2) So now, since we need to find the other angle, then we need to apply the Law of Sines to find out the missing angle:

[tex]\begin{gathered} \frac{a}{\sin(A)}=\frac{b}{\sin (B)} \\ \frac{16}{\sin(32)}=\frac{19}{\sin (X)} \\ 16\cdot\sin (x)=19\cdot\sin (32) \\ \frac{16\sin(X)}{16}=\frac{19\sin (32)}{16} \\ \sin (X)=\frac{19\sin(32)}{16} \\ \end{gathered}[/tex]

As we need the measure of the angle, (not any leg) then we need to use the arcsine of that quotient:

[tex]\begin{gathered} X=\sin ^{-1}(\frac{19\cdot\sin (32)}{16}) \\ X=38.996\approx39 \end{gathered}[/tex]

3) Hence, the approximate measure of that angle X is 39º

View image ChengyuR220689