Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
In this problem
the distance traveled between the seconds t=1 and t=3 is given by
[tex]\int_1^3(t^2-t+6)dt=\frac{50}{3}\text{ m}[/tex]The answer is
50/3 meters
or 16.67 meters
Explanation of integrals
In this problem we have
[tex]\int_1^3(t^2-t+6)dt=\int_1^3t^2dt-\int_1^3tdt+\int_1^36dt[/tex][tex]\begin{gathered} \int_1^3t^2dt=\frac{t^3}{3} \\ Evaluate\text{ at 3 and 1} \\ \frac{(3)^3}{3}-\frac{1^3}{3}=\frac{27}{3}-\frac{1}{3}=\frac{26}{3} \end{gathered}[/tex][tex]\begin{gathered} -\int_1^3tdt=-\frac{t^2}{2} \\ evaluate\text{ at 3 and 1} \\ -\frac{3^2}{2}+\frac{1^2}{2}=-\frac{9}{2}+\frac{1}{2}=-4 \end{gathered}[/tex][tex]\begin{gathered} \int_1^36dt=6t \\ evaluate\text{ at 3 and 1} \\ 6(3)-6(1)=12 \end{gathered}[/tex]substitute
[tex]\int_1^3t^2dt-\int_1^3tdt+\int_1^36dt=\frac{26}{3}-4+12=\frac{50}{3}[/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.