At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

It is a Algebra problemSuppose an object is thrown upward with an initial velocity of 48 feet per second from a height of 120 feet. The height of the object t seconds after it is thrown is given by h(t)=-16t²+48t+120. Find the average velocity in the first two seconds after the object is thrown.

Sagot :

Answer

Average velocity in the first 2 seconds = 16 ft/s

Explanation

The average value of a function over an interval [a, b] is given as

[tex]\text{Average value of the function = }\frac{1}{b-a}\int ^b_af(x)dx[/tex]

The integral is evaluated over the same interval [a, b]

Since we are asked to find the average velocity over the first 2 seconds, we need to first obtain the funcion for th object's velocity.

Velocity = (dh/dt)

h(t)= -16t² + 48t + 120

Velocity = (dh/dt) = -32t + 48

So, we can then find the average velocity over the first 2 seconds, that is, [0, 2]

[tex]\begin{gathered} \text{Average value of the function = }\frac{1}{b-a}\int ^b_af(t)dt \\ a=0,b=2,f(t)=-32t+48 \\ \text{Average Velocity = }\frac{1}{2-0}\int ^2_0(-32t+48)dt \\ =\frac{1}{2}\lbrack-16t^2+48t\rbrack^{2_{}}_0 \\ =\frac{1}{2}\lbrack-16(2^2)+48(2)\rbrack_{} \\ =0.5\lbrack-16(4)+96\rbrack \\ =0.5\lbrack-64+96\rbrack \\ =0.5\lbrack32\rbrack \\ =16\text{ ft/s} \end{gathered}[/tex]

Hope this Helps!!!

Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.