Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Answer:
0.392 moles of KNO3.
Explanation:
To find the moles of a solute based on the volume and concentration of a solution, we use the following formula:
[tex]Molarity\text{ \lparen M\rparen=}\frac{mole\text{s of solute}}{liter\text{s of solution}}=\frac{mo\text{l }}{L}.[/tex]The given data is: molarity = 0.560 M and volume (liters of solution) = 0.70 L. So, let's solve for 'moles of solute' and replace the values that we have. The solute in this case, would be KNO3:
[tex]\begin{gathered} mole\text{s of solute=Molarity \lparen M\rparen}\cdot liter\text{s of solution} \\ mole\text{s of KNO}_3\text{=0.560M}\cdot0.70\text{ L = 0.392 moles KNO}_3. \end{gathered}[/tex]We're going to use 0.392 moles of KNO3 to prepare 0.70 L of a 0.560 M solution.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.