Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Hi I need help with this i’m in a hurry so can you please just tell me the answer lol sorry i’m just in a little rush

Hi I Need Help With This Im In A Hurry So Can You Please Just Tell Me The Answer Lol Sorry Im Just In A Little Rush class=

Sagot :

Step 1

In the example why is the area of one triangle multiplied by 2.

This is because the hexagon is divided into one rectangle and 2 congruent triangles. Therefore, the area of the two triangles will be the same since they are congruent triangles. In order to get the area of the hexagon, the area of one of the triangles is mutiplied by 2 and added to the area of the rectangle.

Step 2

Find the dimension of one of the shaded triangle from Bev's pattern.

[tex]\begin{gathered} \\ \text{For Bev's triangle;} \\ \text{base}=4 \\ \text{height}=3 \\ Slantheight^2=(\text{ }\frac{base}{2})^2+height^2 \\ Slantheight^2=(\frac{4}{2})^2+3^2 \\ Slantheight^{}=\sqrt[]{2^2+9} \\ Slantheight=\sqrt[]{13}\text{unit} \end{gathered}[/tex]

The dimensions will therefore be;

[tex]\begin{gathered} \text{base= 4unit} \\ \text{slant height=}\sqrt[]{13}unit \\ \text{slant height=}\sqrt[]{13}unit \end{gathered}[/tex]

What can you say about the shaded area of all the shaded triangles in Bev's pattern.

[tex]\begin{gathered} \text{Area of given triangle=6unit}^2 \\ \text{Area of Bev's triangle=}\frac{1}{2}\times4\times3=6unit^2 \end{gathered}[/tex]

The area of all shaded triangles in Bev's pattern are equal. This is because all the shaded triangles have the same dimensions and can be said to be congruent. Hence, they will have the same area.