Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Given:
a.) The circumference of a big circle is 36 pi.
b.) The area of a smaller circle located inside the bigger circle is 16 pi.
The probability that the point lands in the smaller one is,
[tex]\text{ Probability = }\frac{Area_{Small\text{ Circle}}}{Area_{Big\text{ Circle}}}[/tex]However, only the circumference of the big circle is given. To be able to get the probability, we must first determine the area of the circle.
a.) Area of the big circle.
[tex]\begin{gathered} \text{ Circumference = }2\pi r \\ 36\pi\text{ = 2}\pi r \\ \frac{36\pi}{2\pi}\text{ = r} \\ 18\text{ = r} \end{gathered}[/tex][tex]\begin{gathered} \text{ Area = }\pi r^2 \\ \end{gathered}[/tex][tex]\begin{gathered} \text{ = }\pi(18)^2 \\ \text{ = }\pi(324) \\ \text{ Area = 324}\pi \end{gathered}[/tex]b.) Let's now determine the probability.
[tex]\text{ Probability = }\frac{Area_{Small\text{ Circle}}}{Area_{Big\text{ Circle}}}[/tex][tex]\text{ = }\frac{16\pi}{324\pi}[/tex][tex]\text{ = }\frac{16}{324}\text{ = }\frac{\frac{16}{4}}{\frac{324}{4}}\text{ = }\frac{4}{81}[/tex][tex]\text{ Probability = }\frac{4}{81}[/tex]Therefore, the probability that the point lands in the smaller one is 4/81.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.