Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Answer:
[tex](\sqrt[]{2\text{ }},-1)\text{ and (-}\sqrt[]{2\text{ }}\text{ ,-1)}[/tex]Explanation:
Here, we want to solve the system of equations
Since we have y in both equations, let us start by rewriting the second equation to look like the first
We have that as:
[tex]\begin{gathered} -2x^2+y\text{ = }-5 \\ y+3x^2\text{ = 5} \end{gathered}[/tex]Subtract equation ii from i
We have it that:
[tex]\begin{gathered} -5x^2=\text{ -10} \\ 5x^2=10 \\ x^2=\text{ 2} \\ \\ x\text{ = }\pm\sqrt[]{2} \end{gathered}[/tex]when x = positive root 2, we have it that:
[tex]\begin{gathered} -2x^2+y\text{ = -5} \\ -2(\sqrt[]{2\text{ }})^2+y\text{ = -5} \\ -4+y\text{ = -5} \\ y\text{ = -5+4} \\ y\text{ = -1} \end{gathered}[/tex]when x = negative root 2:
We will still get the same answer as the square of both returns the same value
Thus, we have the solution to the system of equations as:
[tex](\sqrt[]{2\text{ }},-1)\text{ and (-}\sqrt[]{2\text{ }}\text{ ,-1)}[/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.