Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Given that
[tex]\cos\theta=\frac{\sqrt{3}}{2}[/tex]we can determinate the sine of this angle using the following identity
[tex]\sin^2\theta+\cos^2\theta=1[/tex]If we substitute the value of the cosine on this identity, we're going to have:
[tex]\begin{gathered} \sin^2\theta+(\frac{\sqrt{3}}{2})^2=1 \\ \sin^2\theta+\frac{3}{4}=1 \\ \sin^2\theta=\frac{1}{4} \\ \sin\theta=\pm\frac{1}{2} \end{gathered}[/tex]The definitions of secant, tangent, and cosecant in terms of the sine and cosine are given by:
[tex]\begin{gathered} \tan\theta=\frac{\sin\theta}{\cos\theta} \\ \sec\theta=\frac{1}{\cos\theta} \\ \csc\theta=\frac{1}{\sin\theta} \end{gathered}[/tex]Using the known values for the sine and cosine functions on those definitions, we have:
[tex]\begin{gathered} \tan\theta=\frac{\pm\frac{1}{2}}{\frac{\sqrt{3}}{2}}=\pm\frac{1}{\sqrt{3}}=\pm\frac{\sqrt{3}}{3}\ne-\sqrt{3} \\ \\ \csc\theta=\frac{1}{\pm\frac{1}{2}}=\pm2\ne\frac{1}{2} \\ \\ \sec\theta=\frac{1}{\frac{\sqrt{3}}{2}}=\frac{2}{\sqrt{3}}=\frac{2\sqrt{3}}{3}\ne-2 \\ \\ \sin\theta=\pm\frac{1}{2}\ne\frac{\sqrt{2}}{2} \end{gathered}[/tex]All options are false.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.