Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Conditional Probability
Given two events A and B (not excluding), the probability that A occurs given that B has occurred is called a conditional probability and is calculated as:
[tex]P(A|B)=\frac{P(A\cap B)}{P(B)}[/tex]Where P(A∩B) is the probability that A and B occur simultaneously and P(B) is the probability that B occurs.
Now with the given data, we must find the values of the required probabilities.
30% of the students play a sport (S), this means that:
70% of the students don't play a sport (NS).
65% of the students have a job.
Note that there could be students who both play sports and have a job.
Of the 30% of the students who play a sport, 50% have a job. This means that:
15% of the students play a sport and don't have a job
15% of the students play a sport AND have a job
65% - 15% = 50% of the students have a job and don't play a sport
That last number is the numerator of the equation given above:
P(A∩B) = 0.5
The event B corresponds to students that don't play a sport (NS), thus:
P(B) = 0.7
Thus we have:
[tex]P(A|B)=\frac{0.5}{0.7}=\frac{5}{7}[/tex]The required probability is 5/7 or 0.7143
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.