At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Given the following function:
[tex]k(x)=x^3-5x^2[/tex]We will find the end behavior of the function.
the given function has a degree = 3 (odd)
And the leading coefficient is positive
the end behavior will be as follows:
[tex]\begin{gathered} x\to-\infty\Rightarrow k(x)\to-\infty \\ x\to\infty\Rightarrow k(x)\to\infty \end{gathered}[/tex]So, the answer will be:
The end behavior of the function is down to the left and up to the right.
===============================================================
Part (2), we will find the y-intercepts
The y-intercept is the value of y when x = 0
So, we will substitute x = 0 and then solve y
[tex]y=0^3-5(0^2)=0[/tex]So, the answer will be:
y-intercept = (0, 0)
================================================================
Part 3: we will find the zeros of k(x)
The zeros of the function are the values of x which make k(x) = 0
So, we will write the equation k(x) = 0 and then solve it for x.
[tex]\begin{gathered} x^3-5x^2=0 \\ x^2(x-5)=0 \\ x^2=0\to x=0 \\ x-5=0\to x=5 \end{gathered}[/tex]So, the answer will be:
Zeros of k: 0,5
===============================================================
Part 4: we will find the graph of k(x)
From the previous parts, we can conclude that
The graph of the function will be as shown in option D
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.