At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
SOLUTION
We want to write
[tex]\begin{gathered} \mleft(3-2i\mright)^3\text{ in simplest form } \\ a+bi \end{gathered}[/tex]This means we have to expand
[tex](3-2i)^3[/tex]Applying perfect cube formula, we have
[tex]\begin{gathered} \mleft(a-b\mright)^3=a^3-3a^2b+3ab^2-b^3 \\ \text{where } \\ a=3,\: \: b=2i \end{gathered}[/tex]We have
[tex]\begin{gathered} (a-b)^3=a^3-3a^2b+3ab^2-b^3 \\ \mleft(3-2i\mright)^3=3^3-(3\times3^2\times2i)+(3\times3\times(2i)^2)-(2i)^3_{} \\ =27-(27\times2i)+(9\times(2i)^2)-(2i)^3_{} \end{gathered}[/tex]This becomes
[tex]\begin{gathered} \text{note that i = }\sqrt[]{-1} \\ i^2=\sqrt[]{-1^2}=-1 \\ So\text{ we have } \\ =27-(27\times2i)+(9\times(2i)^2)-(2i)^3_{} \\ 27-54i+(9\times4i^2)-(8i^2\times i) \\ 27-54i+(9\times4\times-1)-(8\times-1\times i) \\ 27-54i-36+8i \\ -9-46i \end{gathered}[/tex]Hence the answer is
[tex]-9-46i[/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.