Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Drag and drop the expressions into the boxes to correctly complete the proof of the polynomial identity.(x2 + y2)2 + 2x?y– y4 = x(x² + 4y?)(x2 + y2)2 + 2x²y2 – y4 = x(+ 4y?)+2x²y2 – y4 = x2 (x2 + 4y?)x² (x² + 47²)= x2 (x2 + 4y2)x² (x² + 47²) x² – 2x²y² + y x² + yt x² + 4x²72 x + 2x²,2x² + 2x²y² + yt

Drag And Drop The Expressions Into The Boxes To Correctly Complete The Proof Of The Polynomial Identityx2 Y22 2xy Y4 Xx 4yx2 Y22 2xy2 Y4 X 4y2xy2 Y4 X2 X2 4yx X class=

Sagot :

Answer:

x^4 + y^4 + 2x^2 y^2

x^4 + 4x^2y^2

x^2 (x^2 + 4y^2 )

Explanation:

Expanding the the expression gives

[tex]\begin{gathered} (x^2+y^2)^4=(x^2)^2+(y^2)^2+2(x^2)(y^2) \\ =\boxed{x^4+y^4+2x^2y^2\text{.}} \end{gathered}[/tex]

Simplifying the Left-hand side gives

[tex]\begin{gathered} x^4+y^4+2x^2y^2+2x^2y^2-y^4 \\ =\boxed{x^4+4x^2y^2\text{.}} \end{gathered}[/tex]

Finally, factoring out x^2 from the left-hand side gives

[tex]x^4+4x^2y^2=\boxed{x^2\mleft(x^2+4y^2\mright)\text{.}}[/tex]

Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.