Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

which equation shows x^2+6x-4=0 rewritten by completing the squarea) (x+3)^2=36b) (x+3)^2=4c) (x+3)^2=9d) (x+3)^2=13

Sagot :

Solution

Step 1

Write the equation:

[tex]x^2\text{ + 6x - 4 = 0}[/tex]

Step 2:

Rewrite the equation:

[tex]x^2\text{ + 6x = 4}[/tex]

Step 3

[tex]\begin{gathered} Add\text{ }\frac{b^2}{4a\text{ }}\text{ to both sides to get a perfect square.} \\ \text{a = 1, b = 6} \\ \frac{b^2}{4a}\text{ = }\frac{6^2}{4\times1}\text{ = }\frac{36}{4}\text{ = 9} \end{gathered}[/tex][tex]\begin{gathered} x^2\text{ + 6x + 9 = 4 + 9} \\ Add\text{ similar terms:} \\ (x\text{ + 3\rparen}^2\text{ = 13} \end{gathered}[/tex]

Final answer

[tex]d)\text{ \lparen x + 3\rparen}^2\text{ = 13}[/tex]

We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.