Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Answer:
Table 3
Explanation:
A linear function has a constant slope.
To determine if the table represents a linear function, find the slope for two different pairs of points.
Table 1
Using the points (1,-2), (2,-6)
[tex]\text{Slope},m=\frac{Change\text{ in y-axis}}{Change\text{ in x-axis}}=\frac{-6-(-2)}{2-1}=-6+2=-4[/tex]Using the points (2,-6), (3,-2)
[tex]\text{Slope},m=\frac{Change\text{ in y-axis}}{Change\text{ in x-axis}}=\frac{-2-(-6)}{3-2}=-2+6=4[/tex]The slopes are not the same, thus, the function is not linear.
Table 3
Using the points (1,-2), (2,-10)
[tex]\text{Slope},m=\frac{Change\text{ in y-axis}}{Change\text{ in x-axis}}=\frac{-10-(-2)}{2-1}=-10+2=-8[/tex]Using the points (2,-10), (3,-18)
[tex]\text{Slope},m=\frac{Change\text{ in y-axis}}{Change\text{ in x-axis}}=\frac{-18-(-10)}{3-2}=-18+10=-8[/tex]The slopes are the same, thus, the function is linear.
Table 3 is the correct option.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.