Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Ask your questions and receive precise answers from experienced professionals across different disciplines. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Use the drawing tool(s) to form the correct answer on the provided graph.
Graph the solution to this system of inequalities in the coordinate plane.
3y>2x + 122x + y ≤ -5Having trouble rewriting in form. Graphing once in form okay.


Sagot :

Explanation

We are given the following system of inequalities:

[tex]\begin{gathered} 3y>2x+12 \\ 2x+y\leqslant-5 \end{gathered}[/tex]

We are required to graph the given system of inequalities.

This is achieved thus:

- First, we determine two coordinates from the given inequalities:

[tex]\begin{gathered} 3y>2x+12 \\ \text{ Suppose }3y=2x+12 \\ \text{ Let x = 0} \\ 3y=12 \\ y=4 \\ Coordinate:(0,4) \\ \\ \text{Suppose }3y=2x+12 \\ \text{ Let y = 0} \\ 0=2x+12 \\ 2x=-12 \\ x=-6 \\ Coordinate:(-6,0) \end{gathered}[/tex]

- Now, we plot the points on a graph. Since the inequality is "strictly greater than", the line drawn will be broken. The graph is shown below:

- Using the second inequality, we have:

[tex]\begin{gathered} 2x+y\leqslant-5 \\ \text{ Suppose }2x+y=-5 \\ \text{ Let y = 0} \\ 2x=-5 \\ x=-2.5 \\ Coordinate:(-2.5,0) \\ \\ \text{Suppose }2x+y=-5 \\ \text{ Let x = 0} \\ y=-5 \\ Coordinate:(0,-5) \end{gathered}[/tex]

The graph becomes:

Combining both graphs, we have the solution to be:

The solution is the intersection of both graphs as indicated above.

View image AnnelV197546
View image AnnelV197546
View image AnnelV197546