At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

For the polynomial below, -3 and 1 are zeros. Express f (x) as a product of linear factors.

For The Polynomial Below 3 And 1 Are Zeros Express F X As A Product Of Linear Factors class=

Sagot :

Explanation

Since -3 and 1 are zeros of the functions, it implies that

[tex](x+3)\text{ }and\text{ }(x-1)[/tex]

are factors of the equation.

Therefore we can find the remaining factors below

[tex](x+3)(x-1)=x^2+2x-3[/tex]

By long division

[tex]remaining\text{ expression =}\frac{x^4+6x^3+7x^2-8x-6}{x^2+2x-3}=x^2+4x+2[/tex]

By quadratic formula

[tex]\begin{gathered} x_{1,2}=\frac{-4\pm\sqrt{4^2-4\times1\times2}}{2\times1} \\ x_1=\frac{-4+2\sqrt{2}}{2},x_2=\frac{-4-2\sqrt{2}}{2} \\ x=-2+\sqrt{2},x=-2-\sqrt{2} \\ therefore \\ (x+2-\sqrt{2})(x+2+\sqrt{2}) \end{gathered}[/tex]

The linear factor are

Answer:

[tex]f(x)=(x+3)(x-1)(x+2-\sqrt{2})(x+2+\sqrt{2})[/tex]

We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.