Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Answer:
Explanation:
Given:
To determine the area of the portion of the triangle that lies outside of the circle but within the triangle, we find the areas of triangle and circle first:
For the triangle, we use the formula:
A=1/2bh
where:
b=base
h=height
We plug in what we know:
[tex]\begin{gathered} A=\frac{1}{2}bh \\ =\frac{1}{2}(20ft)(20ft) \\ =\frac{1}{2}(400ft^2) \\ \text{Calculate} \\ A=200ft^2 \end{gathered}[/tex]Next, we solve for the area of the circle using the given formula:
A=πr^2
where:
r=radius
So,
[tex]\begin{gathered} A=\pi r^2 \\ =\pi(6ft)^2 \\ \text{Calculate} \\ A=113.1ft^2 \end{gathered}[/tex]Then, to find the area of the portion of the triangle that lies outside of the circle but within the triangle:
Area of the portion = Area of the Triangle - Area of the Circle
We plug in what we know:
[tex]\begin{gathered} \text{ }=200ft^2-113.1ft^2 \\ \text{Area of the portion = }86.9ft^2 \end{gathered}[/tex]Therefore, the answer is 86.9 ft^2.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.