Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Please help solve the following questions using the exponential equation

Please Help Solve The Following Questions Using The Exponential Equation class=

Sagot :

SOLUTION

We want to solve

[tex]7^{2x+4}=2^{x-5}[/tex]

Taking logarithm of both sides, we have

[tex]\begin{gathered} \log 7^{2x+4}=\log 2^{x-5} \\ (2x+4)\log 7=(x-5)\log 2 \\ \text{expanding we have } \\ (2x)\log 7+(4)\log 7=(x)\log 2-(5)\log 2 \end{gathered}[/tex]

Collecting like terms we have

[tex]\begin{gathered} (2x)\log 7-(x)\log 2=-(4)\log 7-(5)\log 2 \\ x(2\log 7-\log 2)=-4\log 7-5\log 2 \\ \text{dividing both sides by }(2\log 7-\log 2),\text{ we have } \\ x=\frac{-4\log 7-5\log 2}{2\log 7-\log 2} \end{gathered}[/tex]

Hence the solution set expressed in terms of logarithm is

[tex]x=\frac{-4\log7-5\log2}{2\log7-\log2}[/tex]

Using a calculator to obtain a decimal approximation, we have

[tex]\begin{gathered} x=\frac{-4\log7-5\log2}{2\log7-\log2} \\ x=\frac{-3.3804-1.5051}{1.6902-0.3010} \\ x=\frac{-4.8855}{1.3892} \\ x=-3.51677 \\ x=-3.52 \end{gathered}[/tex]

Hence the answer is -3.52 to 2 decimal places