Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Given:
The eyuation of the parabola.
[tex]y=(x-4)(x+2)[/tex]Required:
We need to find the x-intercepts, vertex, and standard form of the equation.
Explanation:
Set y =0 and solve for x to find the x-intercepts of the parabola.
[tex](x-4)(x+2)=0[/tex][tex](x-4)=0,(x+2)=0[/tex][tex]x=4,x=-2[/tex]The x-intercepts are 4 and -2.
Multipy (x-4) and (x+2) to find the stansdad form of the equation.
[tex]y=x\left(x+2\right)-4\left(x+2\right)[/tex][tex]y=(x)x+2(x)+(-4)x+(-4)2[/tex][tex]y=x^2+2x-4x-8[/tex][tex]y=x^2-2x-8[/tex]The standard form of the equation is
[tex]y=x^2-2x-8.[/tex]which is of the fom
[tex]y=ax^2+bx+c[/tex]where a =1, b =-2 and c =-8.
[tex]\text{ The x- coordinate of the vertex is }h=-\frac{b}{2a}.[/tex]Substitute b =-2 and a =1 in the equation.
[tex]\text{ The x- coordinate of the vertex is }h=-\frac{(-2)}{2(1)}=1[/tex][tex]substitute\text{ x =1 in the equation }y=x^2-2x-8\text{ to find the y-coordinate of the vertex.}[/tex][tex]y=1^2-2(1)-8=-9[/tex]The vertex of the given parabola is (1,-9).
Final answer:
1)
The x-intercepts are 4 and -2.
2)
The standard form of the equation is
[tex]y=x^2-2x-8.[/tex]3)
The vertex of the given parabola is (1,-9).
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.