Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Given:
The eyuation of the parabola.
[tex]y=(x-4)(x+2)[/tex]Required:
We need to find the x-intercepts, vertex, and standard form of the equation.
Explanation:
Set y =0 and solve for x to find the x-intercepts of the parabola.
[tex](x-4)(x+2)=0[/tex][tex](x-4)=0,(x+2)=0[/tex][tex]x=4,x=-2[/tex]The x-intercepts are 4 and -2.
Multipy (x-4) and (x+2) to find the stansdad form of the equation.
[tex]y=x\left(x+2\right)-4\left(x+2\right)[/tex][tex]y=(x)x+2(x)+(-4)x+(-4)2[/tex][tex]y=x^2+2x-4x-8[/tex][tex]y=x^2-2x-8[/tex]The standard form of the equation is
[tex]y=x^2-2x-8.[/tex]which is of the fom
[tex]y=ax^2+bx+c[/tex]where a =1, b =-2 and c =-8.
[tex]\text{ The x- coordinate of the vertex is }h=-\frac{b}{2a}.[/tex]Substitute b =-2 and a =1 in the equation.
[tex]\text{ The x- coordinate of the vertex is }h=-\frac{(-2)}{2(1)}=1[/tex][tex]substitute\text{ x =1 in the equation }y=x^2-2x-8\text{ to find the y-coordinate of the vertex.}[/tex][tex]y=1^2-2(1)-8=-9[/tex]The vertex of the given parabola is (1,-9).
Final answer:
1)
The x-intercepts are 4 and -2.
2)
The standard form of the equation is
[tex]y=x^2-2x-8.[/tex]3)
The vertex of the given parabola is (1,-9).
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.