Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Looking at the restrictions over the variable x, we know that the domain is:
[tex]x\ge2[/tex]To find the range, notice that:
[tex]\sqrt[]{x-2}\ge0[/tex]On the other hand, the function:
[tex]y=\sqrt[]{x-2}[/tex]is an increasing function (its value grows when x grows), and can get as large as we want provided a sufficiently large value for x. Then, the range of such a function would be:
[tex]y\ge0[/tex]Which does not get altered when we multiply the square root of (x-2) by 4.
Since the function:
[tex]y=-5+4\sqrt[]{x-2}[/tex]is a 5-units shift downwards, then the variable y can take any value from -5 onwards.
Then, the range of the function is:
[tex]y\ge-5[/tex]Another way to find the range is to isolate x from the equation:
[tex]\begin{gathered} y=-5+4\sqrt[]{x-2} \\ \Rightarrow y+5=4\sqrt[]{x-2} \\ \Rightarrow\frac{y+5}{4}=\sqrt[]{x-2} \\ \Rightarrow(\frac{y+5}{4})^2=x-2 \\ \Rightarrow x-2=(\frac{y+5}{4})^2 \\ \Rightarrow x=(\frac{y+5}{4})^2+2 \end{gathered}[/tex]Since we already know that x must be greater than 2, then:
[tex]\begin{gathered} 2\le x \\ \Rightarrow2\le(\frac{y+5}{4})^2+2 \\ \Rightarrow0\le(\frac{y+5}{4})^2 \\ \Rightarrow0\le|\frac{y+5}{4}| \\ \Rightarrow0\le|y+5| \end{gathered}[/tex]From here, there are two options:
[tex]\begin{gathered} 0\le y+5 \\ \Rightarrow-5\le y \\ \text{ Or} \\ 0\le-y-5 \\ \Rightarrow y\le-5 \end{gathered}[/tex]Since we know an equation for y, then:
[tex]\begin{gathered} -5\le-5+4\sqrt[]{x-2} \\ \Rightarrow0\le4\sqrt[]{x-2} \end{gathered}[/tex]Or:
[tex]\begin{gathered} -5+4\sqrt[]{x-2}\le-5 \\ \Rightarrow4\sqrt[]{x-2}\le0 \end{gathered}[/tex]The second case is not true for every x.
Therefore:
[tex]-5\le y[/tex]Therefore:
[tex]\begin{gathered} \text{Domain: }x\ge2 \\ \text{Range: }y\ge-5 \end{gathered}[/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.