At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Given the next quadratic equation:
[tex]-x^2+14x+61=0[/tex]we can use the quadratic formula to solve it, as follows:
[tex]\begin{gathered} x_{1,2}=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ x_{1,2}=\frac{-14\pm\sqrt[]{14^2-4\cdot(-1)\cdot61}}{2\cdot(-1)} \\ x_{1,2}=\frac{-14\pm\sqrt[]{196+244}}{-2} \\ x_{1,2}=\frac{-14\pm\sqrt[]{440}}{-2} \\ x_1=\frac{-14+\sqrt[]{440}}{-2}=\frac{-14}{-2}-\frac{\sqrt[]{440}}{2}=7-\sqrt[]{110} \\ x_2=\frac{-14-\sqrt[]{440}}{-2}=\frac{-14}{-2}+\frac{\sqrt[]{440}}{2}=7+\sqrt[]{110} \end{gathered}[/tex]The rounded values (two decimal places) are:
[tex]\begin{gathered} x_1=7-10.49=-3.49 \\ x_2=7+10.49=17.49 \end{gathered}[/tex]Since x is the distance, in ft, from the sprinkler, it cannot be negative, then the answer which makes sense in the context of this problem is 17.49 ft
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.