Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
For a conic with a focus at the origin, if the directrix is
[tex]y=\pm p[/tex]where p is a positive real number, and the eccentricity is a positive real number e, the conic has a polar equation
[tex]r=\frac{ep}{1\pm e\sin\theta}[/tex]if 0 ≤ e < 1 , the conic is an ellipse.
if e = 1 , the conic is a parabola.
if e > 1 , the conic is an hyperbola.
In our problem, our equation is
[tex]r=\frac{5}{1+5\sin\theta}[/tex]If we compare our equation with the form presented, we have
[tex]\begin{cases}e={5} \\ p={1}\end{cases}[/tex]Therefore, the directrix is
[tex]y=1[/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.