Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve the exercise you can use the following property of powers
[tex](\frac{a}{b})^n=\frac{a^n}{b^n}[/tex]Then, you have
[tex]\begin{gathered} |(\frac{-1}{2})^3\div(\frac{1}{4})^2|=|\frac{(-1)^3}{(2)^3}^{}\div\frac{(1)^2}{(4)^2}^{}| \\ |(\frac{-1}{2})^3\div(\frac{1}{4})^2|=|\frac{-1^{}}{8}^{}\div\frac{1}{16}^{}| \end{gathered}[/tex]Now, apply the definition of fractional division, that is
[tex]\frac{a}{b}\div\frac{c}{d}=\frac{a\cdot d}{b\cdot c}[/tex][tex]\begin{gathered} |(\frac{-1}{2})^3\div(\frac{1}{4})^2|=|\frac{-1^{}\cdot16}{8\cdot1}^{}| \\ |(\frac{-1}{2})^3\div(\frac{1}{4})^2|=|\frac{-1^{}6}{8}^{}| \\ |(\frac{-1}{2})^3\div(\frac{1}{4})^2|=|-2| \end{gathered}[/tex]Finally, apply the definition of absolute value, that is, it is the distance between a number and zero. The distance between -2 and 0 is 2.
Therefore, the value of the expression is 2.
[tex]\begin{gathered} |(\frac{-1}{2})^3\div(\frac{1}{4})^2|=|-2| \\ |(\frac{-1}{2})^3\div(\frac{1}{4})^2|=2 \end{gathered}[/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.