Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

At a carnival, there is a game where you can draw one of 10 balls from a bucket if you pa $16. The balls are numbered from 1 to 10. If the number on the ball is even, you win $22 If the number on the ball is odd, you win nothing. If you play the game, what is the expected profit?

Sagot :

ANSWER

[tex]\text{\$-5}[/tex]

EXPLANATION

To find the expected profit, we have to first find the expected payout.

There is a possibility of drawing up to 10 balls, numbered 1 to 10.

There are 5 even balls and 5 odd balls.

We have to find the probabilty of drawing even or odd balls:

=> The probability of drawing an even ball is:

[tex]P(\text{even)}=\frac{5}{10}=\frac{1}{2}[/tex]

=> The probability of drawing an odd ball is:

[tex]P(\text{odd)}=\frac{5}{10}=\frac{1}{2}[/tex]

The expected payout is the sum of the product of the probability of drawing each ball and the prize of each ball.

That is:

[tex]\begin{gathered} E(X)=\Sigma\mleft\lbrace X\cdot P(X)\mright\rbrace \\ E(X)=(22\cdot\frac{1}{2})+(0\cdot\frac{1}{2}) \\ E(X)=11+0 \\ E(X)=\text{ \$11} \end{gathered}[/tex]

The expected profit can be found by subtracting the cost of playing the game from the expected payout:

[tex]\begin{gathered} Exp.Profit=11-16 \\ Exp.Profit=\text{ \$-5} \end{gathered}[/tex]

That is the answer.

We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.