Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
We are given the function below;
[tex]f(x)=-2x^2-4x[/tex]PART A
We then proceed to find if the function has a minimum or maximum value. To find if the function has a minimum or maximum value. If the x^2 coefficient is positive, the function has a minimum. If it is negative, the function has a maximum.
ANSWER: From the above, we can see that x^2 is negative, hence the function has a maximum
PART B and C
To find the minimum or maximum value, we would plot the graph of the f(x). The graph can be seen below.
From the graph, the black point helps answer part A and part B.
ANSWER: The function's maximum value is f(x)=2.
This is the point where the slope of the graph is equal to zero
ANSWER: The maximum value then occurs at x= -1
We can also solve this by differentiating the function.
[tex]\begin{gathered} f(x)=-2x^2-4x \\ f^{\prime}(x)=-4x-4 \\ At\xi maxmum\text{ }f^{\prime}(x)=0 \\ -4x-4=0 \\ -4x=4 \\ x=-\frac{4}{4} \\ x=-1 \\ \therefore\text{The max}imum\text{ value occurs at x=-1} \\ \text{Inserting the value of x into the function, we have} \\ f(x)=-2(-1)^2-4(-1) \\ f(x)=-2+4 \\ f(x)=2 \\ \therefore\text{The function max}imum\text{ value is 2} \end{gathered}[/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.