At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Write the equation of the line that is perpendicular to the line given and through the given point. Do not use spaces in your equation. y=-2X+1 (0,5) *

Sagot :

Answer:

y = 0.5x + 5

Explanation:

The equation of a line can be calculated as:

[tex]y=m(x-x_1)+y_1[/tex]

Where m is the slope and (x1, y1) is a point in the line.

To find the slope of our line, we need to identify the slope of the given line.

Since the equation of the given line is y = -2x + 1, the slope of this line is -2, because it is the number beside the x.

Then, two lines are perpendicular if the product of their slopes is equal to -1. So, we can write the following equation:

[tex]-2\cdot m=-1[/tex]

Therefore, the slope m of our line will be:

[tex]m=\frac{-1}{-2}=0.5[/tex]

Now, we can replace the value f m by 0.5 and the point (x1, y1) by (0, 5) and we get that the equation of the line is:

[tex]\begin{gathered} y=0.5(x-0)+5 \\ y=0.5(x)+5 \\ y=0.5x+5 \end{gathered}[/tex]

Therefore, the answer is y = 0.5x + 5