Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Find the general equation of the circle having a diameter with endpoints at A(-2,3) and B(4,5).

Sagot :

Answer:[tex](x-1)^2+(y-4)^2=\text{ 10}[/tex]Explanation:

The equation of a circle whose center is (a, b) and which has a radius r is given as:

(x - a)² + (y - b)² = r²

For the circle with endpoints at A(-2,3) and B(4,5).​

The center (a, b) of the circle is calculated as:

[tex]\begin{gathered} a=\frac{-2+4}{2} \\ a=\frac{2}{2} \\ a=1 \\ b=\frac{3+5}{2} \\ b=\frac{8}{2} \\ b=4 \end{gathered}[/tex]

The center, (a, b) = (1, 4)

The diameter(D) of the circle is the distance between the endpoints A(-2,3) and B(4,5).​

[tex]\begin{gathered} D=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2} \\ D=\sqrt[]{(4-(-2))^2+(5-3)^2} \\ D=\sqrt[]{(4+2)^2+2^2} \\ D=\sqrt[]{6^2+2^2} \\ D=\sqrt[]{36+4} \\ D=\sqrt[]{40} \end{gathered}[/tex]

The diameter of the circle = √40

Radius = Diameter / 2

r = d/2

r = √40 / 2

Substituting a = 1, b = 4, and r = √40 / 2 into the general equation of a circle:

[tex]\begin{gathered} (x-1)^2+(y-4)^2=(\frac{\sqrt[]{40}}{2})^2 \\ (x-1)^2+(y-4)^2=\frac{40}{4} \\ (x-1)^2+(y-4)^2=\text{ 10} \end{gathered}[/tex]

The general equation of the circle is:

[tex](x-1)^2+(y-4)^2=\text{ 10}[/tex]

Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.