Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Complex numbers may be applied to electrical circuits. Electrical engineers use the fact that resistance R toelectrical flow of the electrical current I and the voltage V are related by the formula V = RI. (Voltage ismeasured in volts, resistance in ohms, and current in amperes.) Find the resistance to electrical flow in a circuitthat has a voltage V = (40+30i) volts and current I = (-5+ 3i) amps._+_i/_Note: Answer in the forma + bi/c. If b is negative make sure to put a negative sign in the answer box.

Complex Numbers May Be Applied To Electrical Circuits Electrical Engineers Use The Fact That Resistance R Toelectrical Flow Of The Electrical Current I And The class=
Complex Numbers May Be Applied To Electrical Circuits Electrical Engineers Use The Fact That Resistance R Toelectrical Flow Of The Electrical Current I And The class=
Complex Numbers May Be Applied To Electrical Circuits Electrical Engineers Use The Fact That Resistance R Toelectrical Flow Of The Electrical Current I And The class=

Sagot :

we have the formula

[tex]\begin{gathered} V=RI \\ R=\frac{V}{I} \end{gathered}[/tex]

substitute given values

[tex]R=\frac{40+30i}{-5+3i}[/tex]

Remember that

To divide complex numbers, multiply both the numerator and denominator by the conjugate of the denominator

the conjugate of the denominator is (-5-3i)

so

[tex]\begin{gathered} R=\frac{40+30\imaginaryI}{-5+3\imaginaryI}*\frac{-5-3i}{-5-3i}=\frac{-40(5)-40(3i)-30i(5)-30i(3i)}{25-9i^2}=\frac{-200-120i-150i-90i^2}{25-9(-1)}=\frac{-110-270i}{34} \\ \\ R=\frac{-110-270\imaginaryI}{34} \\ simplify \\ R=\frac{-55-135\imaginaryI}{17} \end{gathered}[/tex]