Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

How to write a rule for the nth term of the geometric seq

How To Write A Rule For The Nth Term Of The Geometric Seq class=

Sagot :

Answer:

[tex]a_n=7(4)^{n-1}[/tex]

Explanations:

The nth term of a geometric sequence is expressed as:

[tex]a_n=ar^{n-1}[/tex]

were:

• a is the first term

,

• r is the common ratio

,

• n is the number of terms

If the 2nd term a₂ = 28, then;

[tex]\begin{gathered} 28=ar^{2-1} \\ ar=28 \end{gathered}[/tex]

If the 5th term a₅ = 1792, then;

[tex]\begin{gathered} 1792=ar^{5-1} \\ ar^4=1792 \end{gathered}[/tex]

Take the ratio of both equations to have:

[tex]\begin{gathered} \frac{ar^4}{ar}=\frac{1792}{28} \\ r^3=64 \\ r=\sqrt[3]{64} \\ r=4 \end{gathered}[/tex]

Substitute r = 4 into any of the equations to have:

[tex]\begin{gathered} ar=28 \\ 4a=28 \\ a=\frac{28}{4} \\ a=7 \end{gathered}[/tex]

Determine the rule for the nth term of the geometric sequence. Recall that;

[tex]\begin{gathered} a_n=ar^{n-1} \\ a_n=7(4)^{n-1} \end{gathered}[/tex]

This gives the nth term of the geometric sequence